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Abstract

This paper deals with a numerical analysis of creep components until failure. We will take an interest in the macro-
scopic modeling of the creep curves with its three stages based on the irreversible thermodynamics theory with in-
ternal variables. A “unified” viscoplastic model is used to describe primary and secondary creep behaviors, and the
tertiary creep description is based on the introduction of a scalar damage variable and the nonlinear effects of changes in
geometry. Therefore, viscoplastic damage models in nonlinear geometry are defined in order to describe different modes
of creep damage development. The numerical properties of the models allow us to obtain a different crack growth
development, in order to know the post-critical behavior and the damage development until failure. The numerical
treatment uses the finite element method and the large time increment method in a version adapted to solve nonlinear
problems with geometrical nonlinearities, in order to obtain a rapid creep life assessment. © 2000 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

In different industries, many engineering components such as conventional and nuclear power plants,
chemical plants, aeroengines and so on, operate at temperatures high enough for creep to be an important
design consideration. The failure of components operating at elevated temperatures can have catastrophic
effects. Therefore, an inelastic stress analysis in the creep range is now seen as a normal procedure in
component assessment. However, the engineer is not usually interested in the complete solution of a
structural problem. In most cases, the solution is performed to allow structural assessment in terms of
functional criteria which concern critical positions. Such positions may be predetermined, if criteria concern
displacement (the tip of a blade touching a turbine casing). Most often, it is a matter of creep damage and
creep life assessment when the critical positions need not be known in advance.
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If numerical modeling of primary and secondary creep phases does not usually present any problems, it
is not so with the tertiary creep period which will lead to failure and which is a determinant for creep life
assessment. In order to describe primary and secondary creep behaviors, a “unified” viscoplastic model is
used (Chaboche and Nouailhas, 1989). The tertiary creep description is based on the introduction of a
scalar damage continuous variable (Kachanov, 1958). In addition to the influence of damage on the strain
rate, the nonlinear effects of large changes in geometry may also significantly contribute to tertiary creep.
Indeed, the experimental data on the creep rupture phenomenon allow us to distinguish two modes of
fracture, which depend on the stress level and the temperature of the test (Skrzypek, 1993). The regimes and
modes of growth of intergranular cavities by the combination of diffusional flow and creep deformation at
different levels of stress and temperature have been studied extensively by many investigators. These de-
velopments have been reviewed by Argon (1982). Experiments on alloys with different microstructures have
identified two limiting types of damage morphology. One limiting type is ductile solids, and the another is
less ductile (brittle), but much more creep resistant.

In order to describe the above creep rupture phenomena, we will define a viscoplastic damage model for
brittle rupture, a viscoplastic viscodamage model in nonlinear geometry for ductile rupture and a visco-
plastic damage model in nonlinear geometry for combined ductile-brittle rupture.

The finite element method codes, generally use Newton—-Raphson methods for solving nonlinear
problems. These methods are incremental in time and iterative on each increment. These are costlier when
nonlinearities accumulate. This is the case for our problem which involves several nonlinearities. Unlike
classical incremental techniques, the large time increment (LATIN) method that is used in this paper,
enables these problems to be simulated without proceeding by small increments. This method was first
introduced by Ladeveze (1985) in the context of structural mechanics. We have developed a version, which
is applicable to nonlinear problems with geometrical nonlinearities (Bellenger, 1998b). This numerical
method does not divide the loading into small increments. The iterative process gives for each iteration a
new estimation solution for large loading increment. This strategy makes it easy to reach swiftly the tertiary
creep period.

In the following, after a presentation of the general thermodynamical framework, the different models
are introduced. These models have been implemented in our finite element code. We will show a rupture
time assessment using different creep rupture theories. We will describe different modes of damage devel-
opment and their dependences on the level of stress, and we will verify the very different early crack growth
behavior exhibited by different structures. For the numerical resolution, the LATIN method appears
suitable to the treatment of structures undergoing creep conditions. Indeed, this method can handle large
time increments during primary and secondary creep phases to reach swiftly the tertiary creep period which
involves most nonlinearities and which leads to failure. The version of the LATIN method developed in this
work will be presented.

2. Constitutive equations

In this work, the phenomenological approach is chosen by using an internal variable to describe the
consequences of damage evolution on the elastic properties as well as on the plastic or viscoplastic flow
properties of the material. The scalar damage variable D used by Lemaitre and Chaboche (1978) and many
other authors is interpreted as the effective area reduction caused by the distributed microscopic cracks and
cavities due to material damage (Lemaitre, 1984; Krajcinovic, 1989). Creep damage through the use of an
internal state variable was modeled phenomenologically first for the design application by Kachanov (1958)
and Rabotnov (1968). They introduced a scalar damage parameter D into creep constitutive relations. The
evolution of this parameter which increase from zero at the start life to unity at failure, was linked to creep
strain in a functional dependence on stress that could be fitted to specific experimental results. This ap-
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proach was later modified by Leckie and Hayhurst (1977) and incorporated into a general finite element
method computer code to solve creep damage distribution problems (Saanouni et al., 1986; Murakami and
Ohno, 1988). This formulation which can represent primary creep as well as the secondary and tertiary
creep are assumed to apply with instantaneous values of time (measured from the first instant of creep), so
that time is employed as an internal variable. Although this is incorrect in principle, reasonable results may
often be obtained if the stress varies slowly. This method is widely used for its convenience. However, in this
approach, during finite element resolution, the elastic modulus is assumed to be independent of damage and
remains fixed at its initial value. In practice, most creep analyses are based on the creep curves of standard
test data in a “superposition” treatment with a single internal variable taken as either time (fundamentally
incorrect but useful in some circumstances) or as equivalent creep strain (Wilshire and Evans, 1994;
Harrison and Homewood, 1994). The latter is quite satisfactory, if stress states do not vary too greatly or
too rapidly during creep, at least for primary and secondary behaviors. This, however, may cease to be true
if the uniaxial law is employed in the tertiary range as the tertiary creep is known often to vary significantly
with stress.

Backstress models (primary and secondary creep) are now available, often within “unified”” approach,
for the treatment of more variable stress states. Therefore, in this work, backstress model within “unified”
formulation will be used for the numerical simulation of primary and secondary creep periods associated
with a scalar damage variable and nonlinear geometrical effects for the tertiary creep description. In
“unified” models, the common features are the viscoplastic potential and the definition of the viscoplastic
flow from the normality rule. In the case of initially isotropic material, the elastic domain is defined by a
sphere in deviatoric stress space. A ‘“unified” formulation as in Robinson (1978) and Chaboche and
Nouailhas (1989), which is sometimes known as viscoplastic is used. A time dependent yield function is
introduced, and the stress may depart from the elastic domain.

2.1. General framework

The modeling of processes associated with viscoplasticity in the framework of a continuum mechanics
approach has led to many specific theories that incorporate viscoplastic flow, hardening and damage effects.
Dynamic recovery effects, static recovery effects (time recovery of hardening) and aging effects are not
considered in this work. Moreover, these constitutive equations are generally built into a thermodynamics
framework with two potentials (Germain, 1972): the state potential (or thermodynamics potential that gives
the state laws), and the dissipation potential that gives evolution laws for state variables associated to
irreversible processes, through the generalized normality assumption (giving rise to the notion of “standard
generalized materials’’). We consider the Helmholtz free energy as the thermodynamics potential. This
presentation assumes elasticity coupled with isotropic damage as an isothermal process. We will consider
only isotropic hardening. The state variables are the elastic strain tensor &. The total strain ¢ can expressed
as the sum of the elastic and the viscoplastic strain, & and &,p.

In the past, a large number of models have been developed in order to allow numerical simulations of
structural damage. The implementation of these models in finite element codes is difficult, because it leads
to unstable calculations. Convergence becomes impossible after limiting points. This problem results from
the bad modelization of nonconvex free energy. Therefore, we propose to use for the above models, a
convex elastic damage model (Benkrid et al., 1994a), stable to “standard generalized materials” (Halphen
and Nguyen, 1975) in its formulation for small transformations. The extension in nonlinear geometry is
carried out in the kinematic context of the corotational model (Ladeveze, 1981). The choice of a damage
convex written with the stress tensor ensures stability. Many numerical results have been presented in
Benkrid (1994b) and Abdali et al. (1996), in order to show stable calculations. This model can easily be
implemented in industrial codes to give damage zone and the maximal loading. This model has been ex-
tended to viscoplasticity and nonlinear geometry (Bellenger and Bussy, 1998a). In the following, we will
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begin to present constitutive laws in small perturbations before presenting their extensions in nonlinear

geometry.

In this study, the internal state variables associated with irreversible processes are the following:

e pis the scalar isotropic hardening variable for viscoplastic deformation. Restricting our consideration to
simple loading histories, we will employ an isotropic yield surface by using the Von Mises yield condition
and the Prandtl-Reuss behavior law, p is the accumulated viscoplastic strain: p = [ Béwp(1) : évp(r)]l/ 2dr.

e X is the scalar damage variable describing the current state of damage.

In this work, we will introduce a new scalar damage variable X related to the usual damage variable D

bounded by 0 and 1:

1
=——=1-D=——. 1
1-D 1+X (1)
AD must verify the condition D + AD < 1, then X is not bounded which avoids numerical integrations
problems. X takes values within the range 0 (for virgin material) to oo (corresponding to complete failure).
We assume some uncouplings between the various state variables and the free energy. Thus, the

Helmholtz free energy per unit volume py can be expressed as follows:
pY (e, X, p) = pe(ee, X) +p‘pvp(p)+ple(X)v (2)

where pi, (e., X) is the elastic strain energy incorporating the effects of the damage on the elastic response of
the material, whereas py,,(p) and pyry (X) are the free energies induced by isotropic hardening and damage
development, respectively. p is the material density.

By differentiating Eq. (2) with respect to time and substituting the resulting expression into the Clausius—
Duhem inequality, we have the following elastic constitutive equation as a result of nonnegative require-
ment of entropy production:

oy 0y,
= P Poe ®)

X

where o is the Cauchy stress tensor.
We will represent the thermodynamics conjugate forces Y and R corresponding to X and p, respectively,
as follows:

_ L Oy, _ o 0. Oy
R—pg—pE7 Y—P&—P6X+P§~ (4)

In the initial undamaged state, the elastic behavior is assumed to be isotropic and linear and thus the
function py, (&) is quadratic in ¢. In order to take into account the effects of damage on the elastic re-
sponse, X is introduced into py, as follows (Lemaitre and Chaboche, 1985):

oo X) =3 ) DA (e 4 @), 5

where C, is the symmetric fourth-order tensor of elastic properties, A and u are the classic Lame’s constants,
tr(.) is the trace of a tensor. py,,(p) and pyy(X) are convex functions of their argument and contain the
Origin pl//vp (O) = pr (O) = O

According to the thermodynamics formulation discussed above, the elastic constitutive equation of the
damage material can be obtained by the use of Egs. (3) and (5), and leads to

W, G
G_paee_lJnge' (6)
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The conjugate force corresponding to the internal state variable p is derived from Eq. (4). In order to
describe the primary creep period in which the creep rate continuously decelerates followed by a secondary
stage during which a minimum steady creep rate is maintained, we use for R, the following form:

Wy,
op o

where Q and b are material constants.

For a fixed applied stress, such form predicts that R changes from zero to an asymptotic value Q.
Without damage, Eq. (21) allows us to have &,,, which varies from an initial to a lower steady value. b is the
saturation speed of R. Thus, we have

O(1 — exp(—bp)), (7)

1 1

() = 0+ exol( ) ). 0

The conjugate force corresponding to the internal state variable X is derived from Eq. (4):
opy 1 Ce
Y=—=—ztrlee——¢ | + Z(X). 9
_ Yy

Z(X)=p e (10)
From Egs. (6) and (9) we can write Y as follows:

Y = —ltr(cCe'o) + Z(X). (11)

The choice of the variable X has a share in the numerical stability of the damage model, with the choice
of the Helmholtz free energy written in Eq. (2).

2.1.1. Dissipation potential
The second principle of thermodynamics requires to write and verify the Clausius—Duhem inequality.
From Egs. (3) and (4), this inequality takes the following form:

® = tr(gé,,) — Rp— YX =0, (12)

where @ represents the intrinsic dissipation.

The dissipation of viscoplastic deformation in polycrystalline materials is mainly produced by disloca-
tion motion under stress, whereas the dissipation of damage is governed by the release of an internal energy
due to the development of macroscopic cavities. In order to satisfy Eq. (12), we assume damage and
viscoplastic processes are independent processes. Therefore, Eq. (12) can be written as the sum of two parts:

@, = tr(dé,,) — Rp = 0 (viscoplastic dissipation), &y = —YX >0 (damage dissipation). (13)

Therefore, we can represent these dissipation mechanisms by two different potential functions: a visco-
plastic potential @7, and a damage potential ¢}. Then, the total dissipation potential is given as the sum of
these two parts:

¢ (0, R, Y) = ¢y (0, R) + ¢x(Y). (14)

The laws of viscoplasticity with damage are derived from this potential through the normality as-
sumption. They are defined below:

o,
o=

(15)
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. 09y,
p - 6R ) (16)
. Oy
X=-=2r (17)

Clearly, if ¢, and ¢} are positive convex functions of their arguments and contain the origin
((pjp(O, 0) = ¢} (0) = 0), the second principle is automatically verified. Here, the intrinsic dissipation takes
the following form:

a *
@vp = (0! (pvp

op: do*
+R Pup >0 and (PX:Y%(

> 0.
da OR oY >0 (18)

In this study, the time dependent viscoplastic behavior is carried out by using Chaboche’s viscoplastic
constitutive equation (Lemaitre, 1984). The author introduces the concept of the elastic domain described
in the stress space as

Sw(0,R(p)) = 0eq — R(p) — Ro <0, (19)
where R is the scalar variable (or drag stress) given by Eq. (4) responsible for the isotropic hardening effect.
R describes the size of the elastic domain. o, is the Von Mises equivalent stress. g.q = 1/3tr(ss) and s is the
deviatoric part of the Cauchy stress tensor. Ry, > 0 denotes the initial viscoplastic hardening limit.

In plasticity, the associated flow rule requires the orthogonality of é,, to the yield surface at the point ¢
that belongs to the surface f,, = 0. In viscoplasticity, o lies outside the actual yield surface, f,, > 0. Rice

(1970) suggested the existence of the viscoplastic potential as the extension of f,, beyond the yield surface
expressed as a power function of f,, (often called the overstress or the viscous stress).

K /fe m
A 2 20
vp n 1 < K >Jr ’ ( )

where K and n are material parameters, (.), denotes the positive part.
The viscoplastic potential of Eq. (20) together with Egs. (15) and (16) furnish the evolution equations for
viscoplastic strain &, and the isotropic hardening p as follows:

. a(pf/p 3s fvp !

=2 =30 ) 2l
90y [ fw\

P= "%k —<1<>+‘ @)

In viscoplasticity, we obtain an explicit form for p and &,,,.
The choice of ¢} and the coupling with geometrical nonlinearities (as the case may be) will allow us to
describe the tertiary creep period and different modes of creep damage evolution as defined below.

2.2. Phenomenological modeling of creep damage

For structural purposes, failure in a creeping part can be considered to result from different mechanisms
and phenomena. Experiments have identified two limiting modes of fracture, which depend on the stress
level and the temperature of the test:

A ductile (or viscous) fracture is preceded by a reduction of the cross-sectional area due to large creep
strains essentially caused by a slip deformation within the grains. The growth and coalescence of cavities
in these materials is quite unhomogeneous. These subsequently grow further by the creep deformation,
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to interact with each other and eventually result in overall fracture (Chen and Argon, 1981; Don and
Majumbar, 1986). The ductile rupture mechanism occurs at high stress levels and low temperature regimes.

A brittle or intergranular fracture is caused by the deterioration of material due to the formation of voids
at grain boundaries. This fracture mechanism results in the growth of voids and the corresponding re-
duction of effective cross-sectional area below a critical value. The intergranular cavitation process in these
alloys is more homogeneous and leads to overall fracture without the intermediate formation of an ap-
preciable density of microcracks. The brittle fracture mechanism occurs at low stress levels and high
temperatures. The overall geometric effect is not observed as creep strains are small. This scenario is des-
cribed by Tvergaard (1985) and Riedel (1987).

However, the results support the suggestion of the existence of a transition zone (in stress), where none
of the above failure mechanism predominates, and where the combined ductile-brittle mechanism should
be introduced instead. In this zone, the failure results from both the large creep strains and the material
deterioration due to the nucleation of voids.

In order to describe the above features within a phenomenological approach, different models of damage
have been introduced.

2.2.1. Viscoplastic damage model for brittle and combined ductile-brittle failure mechanisms

If we consider brittle fracture at low stress without geometrical effect, we can assume a time dependent
damage evolution. In this case, for a constant applied load, creep damage increases with time and the
geometrical effect is not necessary to describe the tertiary creep period. However, we can introduce non-
linear geometrical effects in order to display a transition zone, where the combined ductile-brittle failure
mechanism results from both material deterioration on grain boundaries and reduction of the cross-
sectional area due to large creep strains within the grain. Indeed, beyond strains of a few percent, the true
stress significantly increases rather than remaining constant. This increase may induce a creep strain en-
largement. With this approach, we may obtain a viscoplastic damage model in nonlinear geometry, where
inelastic and damage processes are time dependent.

The relation (17) specifies the evolution of the damage variable X by means of the damage dissipation
potential ¢j. It has been shown experimentally that there exists a finite region in space stress (strain) within
which materials exhibit elastic—viscoplastic behavior without any development of damage (Holcomb and
Costin, 1986). Therefore, just like the viscoplastic potential, we assume the existence of a time dependent
yield function of damage and a damage potential in the space of the thermodynamics conjugate forces.
Thus, one of the simplest convex function for the damage dissipation potential may be given as for vi-
scoplastic flow:

) 1
gDX_nx—i-l

with fy(Y) = =Y — Zy = itr(aCe™'0) — Z(X) — Z.
The expression of the damage evolution law is given by Eqgs. (11) and (17):

ey = =¥ =2 23)

Ny

X = _aaq;}‘( = <%tr(aCela) - Z(X) - Zo>+ (24)

Z(X) is given by Eq. (10). Z(X) may be chosen as follows:

Z(x) = p W _

= pTE = g1 = exp(—cX)), (25)

where the material parameters n,, ¢ and ¢ control the damage evolution. Z, > 0 denotes the initial damage
limit.
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2.2.2. Viscoplastic viscodamage model for ductile failure mechanism

If we consider that the tertiary creep stage arises from ductile phenomena at high stress, a viscoplastic
model in nonlinear geometry can describe this tertiary creep period. However, cavities subsequently grow
further by the creep deformation. Therefore, we introduce damage effects in the model, in order to display
this rapid evolution of damage at the end of the creep life in addition to the influence of nonlinear geo-
metrical effects of changes in geometry on the strain rate. Unlike the above viscoplastic damage model,
where the creep damage increased with time, and where the geometrical effect was not necessary to have
damage evolution, the viscoplastic viscodamage model requires this geometrical effect. With this approach,
damage evolution is not directly linked with time. It is the coupling between viscoplasticity and geometrical
nonlinearities which allows the increase of stress under constant applied load and consequently the increase
in damage. We obtain a viscoplastic viscodamage model in the nonlinear geometry where viscoplastic
process is always time dependent. The basic idea in the formulation of this model is the following: The
damage directly affects the material elastic stiffness. It is the coupling between the model and geometrical
nonlinearities which enables strain softening to occur.

The relation (17) specifies the evolution of the damage variable X by means of the damage potential ¢
In the viscoplastic damage model, an important distinction from the viscoplastic viscodamage model stems
from the fact that the current stress states can be outside the yield surface of damage, and that the yield
function may have a value larger than zero. Therefore, the consistency conditions are not applicable. When
the external loading remains constant, the stresses return to the yield surface as a function of time. Now, the
damage potential of dissipation is chosen as the indicator function of the damage convex defined by the
yield function:

fX(Y):—Y—ZO:%tr(aCeila)—Z(X)—Zogo, (26)

where Z; > 0 is the initial damage threshold.

Damage occurs only when the state of stress reaches the actual yield function. This corresponds to the
satisfaction of the yield criterion fy = 0. Damage continues to grow, if the yield is continuously satisfied,
i.e. if fy = 0. The expression of the damage evolution law is given by Egs. (11) and (17):

Ofx

X — —;uxé—Y == )\.X. (27)

~ The expression of the damage multiplier Ay > 0 is deduced from the consistency conditions fy = 0 and
fX = 0
Z(X) is given by Eq. (10). Z(X) may be chosen as follows:

0 In(1+X
200) = p P =),

the material parameter A controls the damage evolution.

(28)

2.3. Viscoplastic (visco)damage models in nonlinear geometry

Nonlinear geometrical effects defined above, are described by writing in nonlinear geometry, the models
previously developed in small perturbations. We may consider an initial configuration €,. Loads F;, are
applied to a part 9,€, on its boundary, and displacements u,, on the part 9,€,. Body forces density f;, is
also applied. M, is a point on @, which we find at M at the instant ¢ Fig. 1. M is defined by
M = My + u(My, t), where u(M,,t) is the displacement field.

We may define the various kinematic and static variables used:

F, the gradient tensor
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Y Rotated configuration

Current configuration

Initial configuration
02 X

Fig. 1. Corotational model and boundary conditions.

du (Mo, t)
F=1+—"0Y
Ta
L, the velocity gradient tensor
L=FF",

D, the strain rate tensor
D=3L+L),
W, the rotation rate tensor
=L -17),
7, the Kirchhoff stress tensor
t=Jo, J =detF.
P, the first Piola—Kirchhoff stress tensor
P=JoF " .

Generally, the variables used to describe the constitutive laws in nonlinear geometry are not objective.
To be objective, we consider the following kinematic model of Ladeveze (1981). It introduces for all points
of the domain a local rotation R, defining the corotational configuration Q. This rotation locally transforms
the configuration of Q into a rotated configuration 2 Fig. 1. R is associated to the rotation rate W, and
defined by the differential equation and the conditions:

TR _ 7 — 17 _ 7T
RR_W_z(g LY, (29)
R, =1, RR" =1.
With this rotation, we obtain the strain rate and the stress tensor in the corotational configuration:
7= RtR"
{5 e (30)
the symbol x means that the variable is expressed in the corotational configuration.
Furthermore, 7 the Kirchhoff stress in the rotated configuration takes the following form:
t=R7RT (31)

77 denotes the Jaumann rate of the Kirchhoff stress and © = t'; Eq. (31) defined as an objective stress rate.
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We obtain the viscoplastic (visco) damage models in nonlinear geometry by writing the corotational
configuration of the geometrical model between 7 and D, the models developed above in small perturba-
tions. Then, material behavior laws are objective constitutive laws (Rougée, 1991). The extension of the
models in nonlinear geometry is outlined in the text below, which shows the constitutive equations as

follows (see also Table 1):

P (ee; X, p) = pe(ee, X) + pPyy(p) + iy (X) (the free energy),

1 tr(e, Cet,)

ith
S e

plpe@e’X) =

T
§=/ Ddt
0

T T
with D=D,+D,, and g = / D.dt, &, = / D,,dt,
0 0

where D, is the rotated elastic strain rate and D, is the rotated viscoplastic strain rate.

The constitutive laws:

= awe— Ce ava_
ET PG T Tax =~ = O(1 —exp(—bp)),

_ W 0y ] y oy
Y=psitray =5 0C) +2(X), Z(X)=pZ.

@ = tr(zD,,) — YX —Rp >0 (the intrinsic dissipation),

" (1,R,Y) = ¢, (T, R) + ¢y (Y)
The complementary evolution laws:

b, = ot

op

Table 1
Constitutive equations in nonlinear geometry

(the dissipation potential).

i)

’ oY
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Viscoplastic damage model

Viscoplastic viscodamage model

n+l
K

n+l

<r4q ~R(p) Ry >

(Pip = K
%tr(ID p)

N
with 7, =
and 7, the deviatoric part of z,

¥ 1 e+l

oy = Gu(C') - Z(X) - Zy)";
_ 3

D, =3 ﬁlﬁ

. [T R)-Ro\"

p= - K Jr7

X = (Sl ') - Z(X) - %),

Z(X) = ¢q(1 — exp(—cX)).

Pep

with 7, = 4/3

and z,, the deviatoric part of z,

Se(Y) =1tr(zC'r) — Z(X) — Zy <0,

=3

D,

_Vp_zlcq

. <L.4*R([7)*Rn>
P=\""%

_/'LXQ/ )

P,

_ x (Y.
- ox

X

In(14X)

A

Z(x) =

3tr

K /Tq—R(P)-Ro
ntl K

n

)

>

+

)v)(,

n+1

+

(zpzp)
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3. Numerical treatment by the large time increment method

Numerical simulation of creep behavior with classic software leads to small and therefore numerous
loading time increments, which in turn leads to a large number of global resolutions. Unlike the classical
incremental methods of the Newton-Raphson type, which break up the loading interval into small in-
crements, the LATIN method (Boisse et al., 1990) consists of designing an iterative scheme which, at each
iteration, gives an approximation to the solution for large loading increment (large time increment for creep
behavior). The LATIN method enables us to describe large creep life in a few increments, in order to reduce
the calculation cost. With this method, we can swiftly reach the tertiary creep period, which involves most
nonlinearities in order to obtain a creep life assessment.

3.1. Iterative scheme

The iterative scheme of this method provides at each iteration a new estimation of the solution on
Qo x [0, T], for large time increment, and not for small increment by small increment and it does so until
convergence occurs. As for steady state problems, each iteration progresses from an admissible estimation
S, = [Fn,Pn] € A, to another better estimation S, = [F,,H , Pn+l] € A, verifying the kinematic and the static
admissibilities on €y x [0, 7]. Each iteration is split into two steps; Firstly, a nonlinear and local step (in
space), which leads to a calculated intermediate estimation S, = [F,, P,] € I', verifying the behavior laws.
Secondly, a global (in space) and linear step, which gives S, = [F,,H,P,,H} € A;. The global iterative
process ceases when the error ||S, — S, || is sufficiently low.

Before beginning this presentation, we will present the mechanical problem in nonlinear geometry in a
form compatible with the LATIN method initially developed in small perturbations (Bussy et al., 1990).

Problem: find S, = A, NI
E'un(Mo,t)/M(Mo,O) =0 and M(Mo,()) = 0,

an(Mo,t) |a190: ild and F = aa:/l';

S, €EA4q = (32)
Ve [0,T), Yu'/u* |5,0,=0 and u*(M,,0) =0,

f tr(PTF* dQO fa Q Fdo u dSO"_j‘Q fdu u dQO

Snel":»ﬁﬂ,z&/(éwnéf)y (33)

where .o/ is an operator representing the behavior law. .7 presents the material and the geometrical non-
linearities. The algorithm is in the form of a series of iterations on large time increment in which each
iteration is in two steps between the two sets 4, and I'.

In practice, the global step is transformed in order to write S,.; € 4, in the following form:

Sust =Sy + AS,4 (34)
or [F;1+17Pn+1} = [FruPn] + [AEt+laAPn+l]
n+1

or S, =8 + Z AS;, (35)

where Sy is an elastic initialization and » the number of iterations. AS,,; must be kinematically and stat-
ically admissible at 0.
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Local step: knowing S, = [EHP,,] € Ay, construct S, = [FH],PH]] € I' verifying on [0, 7]

Foo, = (P, n<t) in Q (36)

with £, = £, in Q. (37)
Global step: from T [1:'",,+1,1A",,+1] €T, find AS,., = [AF,.,,AP,.|] € 4, verifying on [0, T):

. : __ Oty : _
FAity 1 /AF, = and - Ay [o,0,= 0,

Yu'Ju* |o,0,=0 and wu*(Mp,0) =0, (38)
Jog Jo 5 |FTCAF | d1dQ = fo ) tr|FT(B, = Pouy)| drdgy.

The act of writing the above global problem (38) in this variational form and in this kinematic approach
for the finite element resolution, arises from the choice of the search direction (37) between the global and
the local steps and the search direction:

Pyt =Py = Ce(Foi — Fypt) (39)

between the local and the global steps.
Search directions defined by Eqgs. (37) and (39) characterize the LATIN method version. With these
choices, the iterative algorithm is like a modified Newton method.

3.2. Representation of the unknowns

There are no special difficulties about the local step. The question is to solve a nonlinear problem for the
interval [0, 7] at any integration point M,. The greatest difficulty is to solve the global problem (38), which is
parameterized by time on the interval [0, T]. In order not to solve the global problem for each time, this
problem is divided into two problems. A first space problem which depends only on the space variable M,
and a second time problem which depends only on time. To obtain at each iteration a new estimation
solution over the large time increment, the idea is to represent at each iteration the unknowns in the fol-
lowing form:

Ai‘nﬂ == l:trhtl(taMO) - ilﬂ(tvMO) = Z gi(t) Wi(M0)7
AF, 1 = Foy (1, My) — F(t, My) = Z gi(t) oi(Mo), (40)

P
AP, =P, (t,My) — P,(t, M) = Z hi(2)

where g;(¢) and A,(¢) defined on [0, T| are scalar time function constant for each integration time step of the
behavior law. p is the number of time functions at each iteration. The fields w;(M,), o;(Mo) and f,(Mp)
depend only on the space variable My. With o;(My) = j—;;:’) and o;(My) KA at 0 and f,(M,) SA at 0.

For more details concerning the numerical treatment by the LATIN method, see Bussy et al. (1990) and
Bellenger (1998b). To sum up, a scheme of the algorithm is presented in Fig. 2, in comparison with classical
incremental method Fig. 3, where K is the stiffness matrix, dU; is the nodal vector of space variables du; and
F; the second member. The space variable o;(M,) is equal to BdU;, where B is the derivative matrix of the
basis functions.
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Computation of Sp: elastic initialization

= Loop over iterations

Loop over time steps
(time representation of the unknowns)

Local step

Loop over integration points
- verification of thg constitutive laws

- computation of P,

Computation of gi(t)

Global resolution
-p linear resolution Vi=1,...,p KdU;=F;
== Computation of a;(Mp)

Computation of 3;(Mp) and £;(¢)

New computation of g;(¢)

— Convergence test S'n =S,

Fig. 2. LATIN method algorithm.

> Loop over time steps

Loop over iterations

Loop over integration points
- verification of the constitutive laws

K dU,' = Fi

Convergence test

Fig. 3. Classic incremental method algorithm.

3.3. Algorithmic aspects

From the computational point of view, the above constitutive equations (see the constitutive equations
in Section 2.3 and Table 1) must be integrated during the local step. In displacement-based finite element
formulations, stress updates take place at the Gauss points for a prescribed nodal displacement. We start
from time ¢ with the known converged state: [¢,, &, , T,, 1, Xi] to calculate the corresponding value at time
t+ AL (e Eup,. > Tetars Prids X.1a] With a prescribed incremental nodal displacement.

Fion = Fi + AF. (41)

Therefore, from the definition of the strain rate tensor D,

| N A
Ao =3 |AFF )+ (AFFL,)' |- (42)
A numerical resolution of the differential equation (29) allows to obtain R, s, and
Ae = R ASRLN. (43)

The key feature of stress updates is characterized by estimating the incremental viscoplastic strain Ag,,
and the incremental damage AX. We can perform an elastic predictor, assuming that the viscoplastic and



590 E. Bellenger, P. Bussy | International Journal of Solids and Structures 38 (2001) 577-604

the damage variables remain frozen. The trial elastic stress 7, can be computed by the constitutive law in
Section 2.3.

_ C,
e =T+ 17 A,

DPrrar = Pry (44)
AXHAr =X.

3.3.1. Viscoplastic damage model

If z,, lies outside the viscoplastic domain f,, and the damage domain fy, a viscoplastic-damage corrector
step is then carried out by using for example a simple Euler forward integration scheme (explicit method).
Therefore (see Table 1),

. : . (z ,)me%R "
Pun=p +Ap=p +Atp, with p, = <qﬁo>+

. . \ (45)
Xoae =X, +AX =X, + ArX, with X, = (Jtr(¢,C. '] — Z(X) —ZO>+X.
Damage and inelastic phenomena evolutions lead to the stress tensor at ¢ + Af as:
Ce Ce
Tiar = T+ Xon [eiar — &vp 0] = T+ Xon [errar = &y, — Ay]- (46)
Substitution of ¢, = —C;'7,(1 +X;) + ¢ (see Table 1) into Eq. (46) yields
Ce 1 +X,
Topy =" —Ae—Ag, | +17,—— 47
Zt+At 1 JFAXHAt [ .3 —Vp] =t 1 JFAXHAt ( )
in which (see Table 2)
31,
Ag,. === Ap. 48
=5, Y (48)
Now PHN becomes
ISHAI = RtT+At Trone Resar Fﬁgt' (49)
Table 2
Summary of material parameters for IN 100 at 1000°C
Parameters IN 100 (1000°C)
E (MPa) 147000
v 0.3
n 7.5
K 450
RO 0
0 95
b 6000
n 4.5
q 0.5
¢ 0.038

Zy 0
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3.3.2. Viscoplastic viscodamage model

The trial elastic stress 7, is given by Eq. (44). If stress lies outside the viscoplastic domain f,,, a visco-
plastic corrector step is then carried out as in the above model. If the stress lies outside the damage domain
fx, a viscodamage corrector is carried out using the algorithm stated by Ortiz and Simo (1986).

In this consistency approach (for damage), at each iteration, the stress is relaxed in a step-by-step
process. For each iteration (;), the damage multiplier 1y = X [see Table 1] is determined by the discretized
consistency condition of the damage yield surface. For each iteration, fy is linearized around the current
values of the state variables as

. . ofY) . ofY .
U+ £0) X (+1) X 1
X _fXHAz + <—a‘[ AIX + —aX A)(O+ ) (50)
t+At +At

The damage multiplier is determined by requiring f ~ (. Differentiating the constitutive law of z (see
the constitutive equations in Section 2.3), we may Obtdln damdge stress variation Ar(’“ in the following
form:

C

Ag&f’l) = TSRy e, AXUTD, (51)
(1 + r+Ar)
Substitution of the constitutive law of t into Eq. (51) gives
o L0 ,
AI&(H ) — —t+At AX(/H). (52)
1 + X, t+At
Substitution of Eq. (52) into Eq. (50) gives
()
AX(/+1) — = fXHAz (53)
t(/ IC71—1+[ (A (J
i, te (Xiiar)
and
Y j+1 A
XL =X+ 3o Ax, Y
]
z(fm is given by Eq. (47). The iterative process ceases when f)y: ~ 0.

4. Numerical examples

The creep constitutive models in nonlinear geometry, presented above, have been implemented in our
finite element code OPTIFIA using the LATIN method. The elements used are isoparametric six-node
triangles with three Gauss points.

Firstly, the viscoplastic damage model has been used for uniaxial tensile creep behavior, in order to
display the modeling and the numerical resolution capabilities. After that, finite element computational
results have been obtained for the creep analysis of notched plates and double edge cracked plates, where
stress gradients exist. It has been shown how this model has the capability to describe the lifetimes and the
patterns of damage evolution. Secondly, the viscoplastic viscodamage model has been used for an L-shaped
structure in order to show the capability and the characteristics of this approach to describe the devel-
opment of damage in creeping components. Finally, we have used the models on the same structure, in
order to display different modes of damage development and their dependences on the level of stress.
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Fig. 4. Comparison of the experimentally obtained strain-time with predicted IN 100 at 1000°C.

4.1. Example 1: uniaxial creep behavior

To test the viscoplastic damage model, we must compare its predictions against uniaxial creep results
concerning IN 100 at 1000°C (Lemaitre and Chaboche, 1985). In this example, the stress state is uniform,
the level of damage is also uniform. The values of the parameters for this material are given in Table 2. Fig.
4 shows the uniaxial creep curves of IN 100 under different levels of applied load (constant applied load).
The prediction of the uniaxial tensile creep behavior by the present model and experimental results concord
well.

In addition to the influence of damage on the strain rate, the nonlinear effects of changes in geometry
may also significantly contribute to tertiary creep. In the constant load tensile test, this amounts to the
uniform thinning of the area cross-section at increasing longitudinal strain. For metals with negligible
damage rates, it is this mechanism, which is primarily responsible for tertiary creep and subsequent rupture.
The viscoplastic damage model used in this example can describe this nonlinear geometrical phenomenon.
In Fig. 5, the behavior of the model is compared with the model in small perturbations (constant stress test)
as well as the behavior of the model without damage for IN 100 at 137 MPa. In this case, it can be seen that
the interaction between the geometrical effect and damage is not important. For this material, the geo-
metrical effect is far less significant than damage. Neglecting the geometrical effect results in an error of
about 4% in fracture time while neglecting damage results in an error of about 300% in fracture time. In
this case, we have described a brittle rupture phenomenon. However, for a material with a more important
primary creep period (Fig. 6(A), Curves 1 and 2), it can be seen that the interaction between the geometrical
effect and damage produces a more pronounced tertiary creep period than that obtained by neglecting
either one of the effects. Neglecting the geometrical effect results in an error of about 16% in fracture time
(Fig. 6(A), Curve 2). Therefore, tertiary creep arises more from interaction between damage and geo-
metrical nonlinearities, these results emphasizes a combined ductile-brittle failure mechanism. This more
important coupling can be seen in Fig. 6(B). For Curve 2, the stress continuously grows with time during
loading when for Curve a, the increase of stress takes place sufficiently early in the lifetime of the specimen
to enable the rupture life to be predicted in small perturbations.
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Fig. 6. (A) Effect of geometrical nonlinearities; (B) Evolution of ¢. Curves b, 1’ and 2’ are in small perturbations. Curves a, b and 2 are
in nonlinear geometry. For curves a and b see Fig. 5.

4.1.1. Numerical analysis

To measure the performance of the LATIN method considered in this study, for results concerning the
above example, we may compute a reference solution with a large number of increments until results do not
change. To assess the performance of the LATIN method, two errors have been defined for IN 100 at 137
MPa. er, is an error in displacement between the reference solution and the calculations for a loading of
20000 seconds, er; is an error in time between the reference solution and the calculations for a displacement
of 0.2%. All runs were performed on an HP 9000 C160 workstation.

First of all (Table 3), a decrease in the number of increments (with 40 time steps per load time increment)
allows us to divide the iterations by 5.6 keeping er; and er, small. In the case of four load time increments,
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Table 3
Numerical analysis of IN 100 results
Reference
Number of LATIN increments 33 33 19 9 4
Number of time steps 2640 1320 760 360 160
Number of LATIN iterations 107 94 65 37 19
CPU time (s) 508 240 135 72 30
er) 0.036% 0.09% 0.22% 0.71%
er, 0.008% 0.036% 0.062% 0.3%
Table 4
Numerical analysis of IN 100 results
Number of LATIN increments 2 2 1
Number of time steps 140 400 200
Number of LATIN iterations 4 5 2
CPU time (s) 17 59 27
er 2% 0.19% 0.35%
er, 1.8% 0.03 %

the CPU time varied from 508 to 30 s (Table 3). It is possible to improve this by describing the three creep
periods with two increments. If we emphasize the speed, only 17 s are required (Table 4). If we emphasize
the accuracy, 59 s are required for er; = 0.19% and er, = 0.03% (Table 4). However, the LATIN method
enables this problem to be simulated with only one increment and two iterations with a good value for er;.
Therefore, 2 x p global resolutions have been necessary (p = 10), p is defined in Eq. (40). With classic
incremental method, at least 200 global resolutions would be necessary to obtain the same time discreti-
zation (200 time steps).

4.2. Example 2: creep damage analysis of edge cracked plates

A better understanding of the development of damage in creeping components is essential in design as
well as in the estimation of creep life. The information that is needed for life predictions is a reliable model
for the accumulation of creep damage. It is then important to describe the possible localizations of this
damage in regions of strain concentrations, such as notches and cracks. Therefore, finite element com-
putational results have been obtained for edge cracked plates. The geometry, mesh and boundary condi-
tions are shown in Fig. 7. We will take one half of the edge cracked plates. The values of the parameters
used in the viscoplastic damage model are given in Table 2.

The creep strain distribution in double edge cracked plate is plotted in Fig. 8(d). For this geometry, the
creep strains concentrate along inclined planes with respect to the initial crack plane. The resulting damage
contours are plotted in Fig. 8(b). It is clear that a damage zone is propagating along an inclined plane with
respect to the initial crack plane. It should be noted that as the creep strains increase, the initial sharp crack
tip becomes more and more blunted. Because of this effect, the specimen develops a notch-like behavior and
the damaged zone begins to concentrate in later stage in the symmetry plane of the crack. The macrocracks
then develop two branches. This tendency can be seen in Fig. 8(b). A plate containing a central slit has been
selected too. The distribution of accumulated creep strains is shown in Fig. 8(c). Fig. 8(a) shows the
contours of damage distribution. A damage zone is propagating along two inclined zones with respect to
the initial crack plane. Fig. 9 shows how a central slit reduces the creep rupture lifetime with regard to a
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Fig. 7. Geometry, mesh and boundary conditions of edge cracked plate (F = 100 MPa).
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Fig. 8. Creep damage contours: (a) central slit, (b) double edge cracked plate; creep strain contours, (c) central slit, and (d) double edge

cracked plate.

double edge cracked plate. These results have shown that the model can predict the patterns of damage
evolution within the edge cracked plates.

Finite element computational results have been obtained for notched plates in Bellenger (1998b). Two
notched radius have been selected: For the specimen with a sharper tip radius, the damage is highly
concentrated at the notch tip region. In the experiments of Ozmat (1991), it was observed that cracks do not
continue to grow along the symmetry plane of the blunt notch indefinitely, but eventually show a tendency
to bifurcate. A trend in this direction is seen in a later stage of our damage accumulation model. In order to
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Fig. 9. Creep curves: velocity of the point A (see Fig. 7) for edge cracked plates.

represent another type of notch character, a second geometry with a less sharp tip radius has been selected.
The maximum damage starts from the root of the notch and progresses gradually to the centre of the
specimen. This is confirmed by the observed appearance of the failed specimen in experimental tests.
Furthermore, the specimen with a sharper tip radius has a rupture lifetime in excess of the lifetime of the
specimen with a less sharp tip radius for the same average stress level acting on a notch throat. These finite
element predictions of rupture times agree well with the experimental rupture times.

4.2.1. Numerical analysis

Numerical results concerning the notched plate with a less sharp tip radius have been obtained with 10
increments for 92% of the loading time (30 000 s). These increments require 14% of the global CPU time.
The last 8% of the loading (until 32500 s) require eight increments and 86% of the global CPU time.
Clearly, we can see that the LATIN method can handle large time increments during primary and sec-
ondary creep periods to reach swiftly the tertiary creep period. However, if we want an assessment of the
creep life, the calculations can be stopped when the tertiary creep period is shown. In this case, we can stop
the calculations at 31000 s and the CPU time is divided by six with a small error on the creep life as-
sessment. If we want to know the post-critical behavior and the damage development until failure, the
calculation cost is higher but possible because of the stability of the models which allows us to continue the
calculations, in order to describe the tertiary creep period (Bellenger, 1998b). The viscoplastic damage
model enables the very different behavior of sharp cracks and notches to be qualitatively described to show
the post-critical contours of damage distribution.

4.3. Example 3: L-shaped structure subjected to creep

The above examples used the viscoplastic damage model in nonlinear geometry. For this model, the
creep damage increases with time and the geometrical effect is not necessary to describe the tertiary creep
period (Fig. 5). However, in order to display a transition zone where the combined ductile-brittle failure
mechanism arises, the nonlinear geometrical effect has been introduced.
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Now, if we consider that the tertiary creep period arises from ductile phenomena at high stress with a
rapid evolution of damage at the end of the creep life, the viscoplastic viscodamage model in nonlinear
geometry must be used. Finite element computational results have been obtained for an L-shaped structure
using this model. The values of the parameters are given in Table 5. The geometry, the mesh and boundary
conditions are shown in Fig. 10.

Unlike the viscoplastic damage model where the geometrical effect was not necessary to have damage
evolution (Fig. 5), the viscoplastic viscodamage model requires this geometrical effect. In Fig. 11 the be-
havior of the model is compared with the model in small perturbations (Curve 1) as well as the behavior of
the model in nonlinear geometry without damage (Z, = oco) (Curve 2). Clearly, we can see that the tertiary
creep description is not possible in small perturbations. This phenomenon arises from the choice of the
damage convex defined by the yield function fy(Y) < 0. Damage occurs only when the state of stress reaches
the actual yield function and damage continues to grow if fy(Y) > 0 at each time step. Under a constant
applied load, this requires the increase in the stress by the nonlinear geometrical effect. Fig. 12 shows the
contours of damage distribution at different creep times. The damage grows swiftly by creep deformation at
the end of the creep life, to produce a more pronounced tertiary creep phase.

This example using the viscoplastic viscodamage model in nonlinear geometry has shown a ductile
fracture preceded by a reduction in the cross-sectional area due to large creep strains, damage subsequently
grows further by creep deformation.

4.4. Example 4: simplified study of turbine casing

Creep strains and damage development in simplified turbine casting (Fig. 13) under steady loads
(pressure) (Dawson et al., 1980) have been predicted using the above models in order to display on the same
structure different crack growth behaviors and their dependences on the stress levels. We will take one
quarter of the structure: the geometry, the loading and boundary conditions are shown in Fig. 13. The
values of the parameters used in the viscoplastic (visco) damage models are given in Tables 6 and 7. For
viscoplastic behavior the parameters correspond to stainless steel 17-12 SPH at 600°C.

To describe a ductile fracture phenomenon with the viscoplastic viscodamage model in nonlinear geo-
metry, a loading of 12 MPa is applied. In this case, damage initially appears in zone B (Fig. 14(b)) followed
by necking in zone C and damage appearance in this zone by creep deformation (Fig. 14(b)). Nevertheless,
the ductile rupture mechanism occurs in zone C, because the damage level is more important than in zone
B. This ductile phenomenon results from large creep strains. The geometrical effect can be seen in Fig. 15(b),
which shows the creep strain contours. The creep curve which gives the displacement of point A

Table 5

Summary of material parameters for the L-shaped structure
Parameters
E (MPa) 50000
v 0.3
n 5
K 1200
Ry 150
0 10
b 500
Z 0.4

A 25
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Fig. 10. Geometry, mesh, boundary conditions and loading of the L-shaped structure (F = 220 MPa).
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Fig. 11. Creep curves — displacement with time of the loaded extremity for the L-shaped structure: 1. viscoplastic viscodamage model in
small perturbations, 2. viscoplastic model in nonlinear geometry and 3. viscoplastic viscodamage model in nonlinear geometry.
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Fig. 12. Creep damage contours at different creep times (¢, = rupture time).
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Fig. 13. Simplified turbine casing, geometry and boundary conditions.

Table 6
Summary of material parameters for the simplified turbine casing

17-12 SPH 600°C

n K o b Ro E (MPa) v
12 150 80 10 6 145000 0.3
Table 7
Summary of damage material parameters for the simplified turbine casing
Viscoplastic damage model Viscoplastic viscodamage model
n, q c Zy Zy A
3 0.5 0.038 0 0.04 100

with time (Fig. 16(a)) shows a pronounced tertiary creep phase which allows us to obtain a creep life as-
sessment.

In order to describe a brittle, but much more creep resistant fracture morphology, a loading of 6 MPa is
applied using the viscoplastic damage model in non linear geometry. Fig. 14(a) shows the contours of
damage distribution at different creep times. It is clear that the damage is concentrated at the inner surface
of the shoulder. In this zone, damage reaches values superior to 99.9%. At rupture, the Von Mises stress
reaches zero for the most damaged point (point B) (Fig. 16(b)) when the stress for point C remains constant
throughout loading. This calculation describes a brittle fracture caused by the deterioration of material
with time. This mechanism occurs at low stress levels. The overall geometric effect is not observed since
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Fig. 14. Creep damage contours at different creep times (¢,

creep strains are small (Fig. 15(a)) and the lifetime is much higher: 316 500 s (3600 s for the loading of 12

MPa).
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Fig. 16. (a) Displacement with time of the point A (see Fig. 13) with a loading of 12 MPa; (b) Local evolutions with time of the Von
Mises equivalent stress (loading of 6 MPa).

5. Conclusions

In this paper, a macroscopic modeling of creep behavior has been proposed. Backstress models within
unified formulation have been used for numerical simulations of primary and secondary creep periods,
associated with a scalar damage variable and nonlinear geometrical effects for tertiary creep description.
Two damage models have been introduced in order to describe different modes of creep damage evolution.
Numerical examples have shown that the proposed approach can describe these different failure mecha-
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nisms with an accurate prediction of the patterns of damage evolution for a large range of components.
Furthermore, the numerical properties of the models allow us to obtain a different crack growth devel-
opment, in order to know the post-critical behavior and the damage development until failure. We have
proposed to use the LATIN method in a version adapted to solve problems with geometrical nonlinearities.
This method describes primary and secondary creep periods in a few large time increments to reach swiftly
the tertiary creep period. If creep life assessment or creep strains evolution are the aims of a study, the
LATIN method allows us to obtain a rapid solution to the problem in a few time increments (one increment
for uniaxial creep problem). In this case, we can stop the calculations when the tertiary creep period is
displayed, with a small error on the creep life assessment. If we want to know the post-critical behavior, the
calculations are possible because of the stability of the models, which allow us to continue these calculations
in order to describe the tertiary creep period.
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