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Abstract

This paper deals with a numerical analysis of creep components until failure. We will take an interest in the macro-

scopic modeling of the creep curves with its three stages based on the irreversible thermodynamics theory with in-

ternal variables. A ``uni®ed'' viscoplastic model is used to describe primary and secondary creep behaviors, and the

tertiary creep description is based on the introduction of a scalar damage variable and the nonlinear e�ects of changes in

geometry. Therefore, viscoplastic damage models in nonlinear geometry are de®ned in order to describe di�erent modes

of creep damage development. The numerical properties of the models allow us to obtain a di�erent crack growth

development, in order to know the post-critical behavior and the damage development until failure. The numerical

treatment uses the ®nite element method and the large time increment method in a version adapted to solve nonlinear

problems with geometrical nonlinearities, in order to obtain a rapid creep life assessment. Ó 2000 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

In di�erent industries, many engineering components such as conventional and nuclear power plants,
chemical plants, aeroengines and so on, operate at temperatures high enough for creep to be an important
design consideration. The failure of components operating at elevated temperatures can have catastrophic
e�ects. Therefore, an inelastic stress analysis in the creep range is now seen as a normal procedure in
component assessment. However, the engineer is not usually interested in the complete solution of a
structural problem. In most cases, the solution is performed to allow structural assessment in terms of
functional criteria which concern critical positions. Such positions may be predetermined, if criteria concern
displacement (the tip of a blade touching a turbine casing). Most often, it is a matter of creep damage and
creep life assessment when the critical positions need not be known in advance.
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If numerical modeling of primary and secondary creep phases does not usually present any problems, it
is not so with the tertiary creep period which will lead to failure and which is a determinant for creep life
assessment. In order to describe primary and secondary creep behaviors, a ``uni®ed'' viscoplastic model is
used (Chaboche and Nouailhas, 1989). The tertiary creep description is based on the introduction of a
scalar damage continuous variable (Kachanov, 1958). In addition to the in¯uence of damage on the strain
rate, the nonlinear e�ects of large changes in geometry may also signi®cantly contribute to tertiary creep.
Indeed, the experimental data on the creep rupture phenomenon allow us to distinguish two modes of
fracture, which depend on the stress level and the temperature of the test (Skrzypek, 1993). The regimes and
modes of growth of intergranular cavities by the combination of di�usional ¯ow and creep deformation at
di�erent levels of stress and temperature have been studied extensively by many investigators. These de-
velopments have been reviewed by Argon (1982). Experiments on alloys with di�erent microstructures have
identi®ed two limiting types of damage morphology. One limiting type is ductile solids, and the another is
less ductile (brittle), but much more creep resistant.

In order to describe the above creep rupture phenomena, we will de®ne a viscoplastic damage model for
brittle rupture, a viscoplastic viscodamage model in nonlinear geometry for ductile rupture and a visco-
plastic damage model in nonlinear geometry for combined ductile±brittle rupture.

The ®nite element method codes, generally use Newton±Raphson methods for solving nonlinear
problems. These methods are incremental in time and iterative on each increment. These are costlier when
nonlinearities accumulate. This is the case for our problem which involves several nonlinearities. Unlike
classical incremental techniques, the large time increment (LATIN) method that is used in this paper,
enables these problems to be simulated without proceeding by small increments. This method was ®rst
introduced by Ladev�eze (1985) in the context of structural mechanics. We have developed a version, which
is applicable to nonlinear problems with geometrical nonlinearities (Bellenger, 1998b). This numerical
method does not divide the loading into small increments. The iterative process gives for each iteration a
new estimation solution for large loading increment. This strategy makes it easy to reach swiftly the tertiary
creep period.

In the following, after a presentation of the general thermodynamical framework, the di�erent models
are introduced. These models have been implemented in our ®nite element code. We will show a rupture
time assessment using di�erent creep rupture theories. We will describe di�erent modes of damage devel-
opment and their dependences on the level of stress, and we will verify the very di�erent early crack growth
behavior exhibited by di�erent structures. For the numerical resolution, the LATIN method appears
suitable to the treatment of structures undergoing creep conditions. Indeed, this method can handle large
time increments during primary and secondary creep phases to reach swiftly the tertiary creep period which
involves most nonlinearities and which leads to failure. The version of the LATIN method developed in this
work will be presented.

2. Constitutive equations

In this work, the phenomenological approach is chosen by using an internal variable to describe the
consequences of damage evolution on the elastic properties as well as on the plastic or viscoplastic ¯ow
properties of the material. The scalar damage variable D used by Lemaitre and Chaboche (1978) and many
other authors is interpreted as the e�ective area reduction caused by the distributed microscopic cracks and
cavities due to material damage (Lemaitre, 1984; Krajcinovic, 1989). Creep damage through the use of an
internal state variable was modeled phenomenologically ®rst for the design application by Kachanov (1958)
and Rabotnov (1968). They introduced a scalar damage parameter D into creep constitutive relations. The
evolution of this parameter which increase from zero at the start life to unity at failure, was linked to creep
strain in a functional dependence on stress that could be ®tted to speci®c experimental results. This ap-
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proach was later modi®ed by Leckie and Hayhurst (1977) and incorporated into a general ®nite element
method computer code to solve creep damage distribution problems (Saanouni et al., 1986; Murakami and
Ohno, 1988). This formulation which can represent primary creep as well as the secondary and tertiary
creep are assumed to apply with instantaneous values of time (measured from the ®rst instant of creep), so
that time is employed as an internal variable. Although this is incorrect in principle, reasonable results may
often be obtained if the stress varies slowly. This method is widely used for its convenience. However, in this
approach, during ®nite element resolution, the elastic modulus is assumed to be independent of damage and
remains ®xed at its initial value. In practice, most creep analyses are based on the creep curves of standard
test data in a ``superposition'' treatment with a single internal variable taken as either time (fundamentally
incorrect but useful in some circumstances) or as equivalent creep strain (Wilshire and Evans, 1994;
Harrison and Homewood, 1994). The latter is quite satisfactory, if stress states do not vary too greatly or
too rapidly during creep, at least for primary and secondary behaviors. This, however, may cease to be true
if the uniaxial law is employed in the tertiary range as the tertiary creep is known often to vary signi®cantly
with stress.

Backstress models (primary and secondary creep) are now available, often within ``uni®ed'' approach,
for the treatment of more variable stress states. Therefore, in this work, backstress model within ``uni®ed''
formulation will be used for the numerical simulation of primary and secondary creep periods associated
with a scalar damage variable and nonlinear geometrical e�ects for the tertiary creep description. In
``uni®ed'' models, the common features are the viscoplastic potential and the de®nition of the viscoplastic
¯ow from the normality rule. In the case of initially isotropic material, the elastic domain is de®ned by a
sphere in deviatoric stress space. A ``uni®ed'' formulation as in Robinson (1978) and Chaboche and
Nouailhas (1989), which is sometimes known as viscoplastic is used. A time dependent yield function is
introduced, and the stress may depart from the elastic domain.

2.1. General framework

The modeling of processes associated with viscoplasticity in the framework of a continuum mechanics
approach has led to many speci®c theories that incorporate viscoplastic ¯ow, hardening and damage e�ects.
Dynamic recovery e�ects, static recovery e�ects (time recovery of hardening) and aging e�ects are not
considered in this work. Moreover, these constitutive equations are generally built into a thermodynamics
framework with two potentials (Germain, 1972): the state potential (or thermodynamics potential that gives
the state laws), and the dissipation potential that gives evolution laws for state variables associated to
irreversible processes, through the generalized normality assumption (giving rise to the notion of ``standard
generalized materials''). We consider the Helmholtz free energy as the thermodynamics potential. This
presentation assumes elasticity coupled with isotropic damage as an isothermal process. We will consider
only isotropic hardening. The state variables are the elastic strain tensor ee. The total strain e can expressed
as the sum of the elastic and the viscoplastic strain, ee and evp.

In the past, a large number of models have been developed in order to allow numerical simulations of
structural damage. The implementation of these models in ®nite element codes is di�cult, because it leads
to unstable calculations. Convergence becomes impossible after limiting points. This problem results from
the bad modelization of nonconvex free energy. Therefore, we propose to use for the above models, a
convex elastic damage model (Benkrid et al., 1994a), stable to ``standard generalized materials'' (Halphen
and Nguyen, 1975) in its formulation for small transformations. The extension in nonlinear geometry is
carried out in the kinematic context of the corotational model (Ladev�eze, 1981). The choice of a damage
convex written with the stress tensor ensures stability. Many numerical results have been presented in
Benkrid (1994b) and Abdali et al. (1996), in order to show stable calculations. This model can easily be
implemented in industrial codes to give damage zone and the maximal loading. This model has been ex-
tended to viscoplasticity and nonlinear geometry (Bellenger and Bussy, 1998a). In the following, we will
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begin to present constitutive laws in small perturbations before presenting their extensions in nonlinear
geometry.

In this study, the internal state variables associated with irreversible processes are the following:
· p is the scalar isotropic hardening variable for viscoplastic deformation. Restricting our consideration to

simple loading histories, we will employ an isotropic yield surface by using the Von Mises yield condition
and the Prandtl±Reuss behavior law, p is the accumulated viscoplastic strain: p � R t

0
�2
3

_evp�s� : _evp�s��1=2
ds.

· X is the scalar damage variable describing the current state of damage.
In this work, we will introduce a new scalar damage variable X related to the usual damage variable D

bounded by 0 and 1:

X � D
1ÿ D

) 1ÿ D � 1

1� X
: �1�

DD must verify the condition D� DD < 1, then X is not bounded which avoids numerical integrations
problems. X takes values within the range 0 (for virgin material) to1 (corresponding to complete failure).

We assume some uncouplings between the various state variables and the free energy. Thus, the
Helmholtz free energy per unit volume qw can be expressed as follows:

qw�ee;X ; p� � qwe�ee;X � � qwvp�p� � qwX �X �; �2�
where qwe�ee;X � is the elastic strain energy incorporating the e�ects of the damage on the elastic response of
the material, whereas qwvp�p� and qwX �X � are the free energies induced by isotropic hardening and damage
development, respectively. q is the material density.

By di�erentiating Eq. (2) with respect to time and substituting the resulting expression into the Clausius±
Duhem inequality, we have the following elastic constitutive equation as a result of nonnegative require-
ment of entropy production:

r � q
ow
oee

� q
owe

oee

; �3�

where r is the Cauchy stress tensor.
We will represent the thermodynamics conjugate forces Y and R corresponding to X and p, respectively,

as follows:

R � q
ow
op
� q

owvp

op
; Y � q

ow
oX
� q

owe

oX
� q

owX

oX
: �4�

In the initial undamaged state, the elastic behavior is assumed to be isotropic and linear and thus the
function qwe�ee� is quadratic in ee. In order to take into account the e�ects of damage on the elastic re-
sponse, X is introduced into qwe as follows (Lemaitre and Chaboche, 1985):

qwe�ee;X � � 1

2

tr�eeCeee�
1� X

� 1

2

k
1� X

tr�ee�� �2 � l
1� X

tr�e2
e�

� �
; �5�

where Ce is the symmetric fourth-order tensor of elastic properties, k and l are the classic Lame's constants,
tr(.) is the trace of a tensor. qwvp�p� and qwX �X � are convex functions of their argument and contain the
origin qwvp�0� � qwX �0� � 0.

According to the thermodynamics formulation discussed above, the elastic constitutive equation of the
damage material can be obtained by the use of Eqs. (3) and (5), and leads to

r � q
owe

oee

� Ce

1� X
ee: �6�
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The conjugate force corresponding to the internal state variable p is derived from Eq. (4). In order to
describe the primary creep period in which the creep rate continuously decelerates followed by a secondary
stage during which a minimum steady creep rate is maintained, we use for R, the following form:

R � q
owvp

op
� Q�1ÿ exp�ÿbp��; �7�

where Q and b are material constants.
For a ®xed applied stress, such form predicts that R changes from zero to an asymptotic value Q.

Without damage, Eq. (21) allows us to have _evp, which varies from an initial to a lower steady value. b is the
saturation speed of R. Thus, we have

qwvp�p� � Q p
�
� 1

b
exp� ÿ bp� ÿ 1

b

�
: �8�

The conjugate force corresponding to the internal state variable X is derived from Eq. (4):

Y � oqw
oX
� ÿ 1

2
tr ee

Ce

�1� X �2 ee

 !
� Z�X �: �9�

Z�X � � q
owX

oX
: �10�

From Eqs. (6) and (9) we can write Y as follows:

Y � ÿ1
2
tr�rCeÿ1r� � Z�X �: �11�

The choice of the variable X has a share in the numerical stability of the damage model, with the choice
of the Helmholtz free energy written in Eq. (2).

2.1.1. Dissipation potential
The second principle of thermodynamics requires to write and verify the Clausius±Duhem inequality.

From Eqs. (3) and (4), this inequality takes the following form:

U � tr�r _evp� ÿ R _p ÿ Y _X P 0; �12�
where U represents the intrinsic dissipation.

The dissipation of viscoplastic deformation in polycrystalline materials is mainly produced by disloca-
tion motion under stress, whereas the dissipation of damage is governed by the release of an internal energy
due to the development of macroscopic cavities. In order to satisfy Eq. (12), we assume damage and
viscoplastic processes are independent processes. Therefore, Eq. (12) can be written as the sum of two parts:

Uvp � tr�r _evp� ÿ R _p P 0 �viscoplastic dissipation�; UX � ÿY _X P 0 �damage dissipation�: �13�
Therefore, we can represent these dissipation mechanisms by two di�erent potential functions: a visco-

plastic potential u�vp, and a damage potential u�X . Then, the total dissipation potential is given as the sum of
these two parts:

u��r;R; Y � � u�vp�r;R� � u�X �Y �: �14�
The laws of viscoplasticity with damage are derived from this potential through the normality as-

sumption. They are de®ned below:

_evp �
ou�vp

or
; �15�
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_p � ÿ ou�vp

oR
; �16�

_X � ÿ ou�X
oY

: �17�

Clearly, if u�vp and u�X are positive convex functions of their arguments and contain the origin
(u�vp�0; 0� � u�X �0� � 0), the second principle is automatically veri®ed. Here, the intrinsic dissipation takes
the following form:

Uvp � r :
ou�vp

or

�
� R

ou�vp

oR

�
P 0 and UX � Y

ou�X
oY

P 0: �18�

In this study, the time dependent viscoplastic behavior is carried out by using Chaboche's viscoplastic
constitutive equation (Lemaitre, 1984). The author introduces the concept of the elastic domain described
in the stress space as

fvp�r;R�p�� � req ÿ R�p� ÿ R06 0; �19�
where R is the scalar variable (or drag stress) given by Eq. (4) responsible for the isotropic hardening e�ect.

R describes the size of the elastic domain. req is the Von Mises equivalent stress. req �
��������������
3
2
tr�ss�

q
and s is the

deviatoric part of the Cauchy stress tensor. R0 P 0 denotes the initial viscoplastic hardening limit.

In plasticity, the associated ¯ow rule requires the orthogonality of _evp to the yield surface at the point r
that belongs to the surface fvp � 0. In viscoplasticity, r lies outside the actual yield surface, fvp > 0. Rice
(1970) suggested the existence of the viscoplastic potential as the extension of fvp beyond the yield surface
expressed as a power function of fvp (often called the overstress or the viscous stress).

u�vp �
K

n� 1

fvp

K

� �n�1

�
; �20�

where K and n are material parameters, h:i� denotes the positive part.
The viscoplastic potential of Eq. (20) together with Eqs. (15) and (16) furnish the evolution equations for

viscoplastic strain evp and the isotropic hardening p as follows:

_evp �
ou�vp

or
� 3

2

s
req

fvp

K

� �n

�
; �21�

_p � ÿ ou�vp

oR
� fvp

K

� �n

�
: �22�

In viscoplasticity, we obtain an explicit form for _p and _evp.
The choice of u�X and the coupling with geometrical nonlinearities (as the case may be) will allow us to

describe the tertiary creep period and di�erent modes of creep damage evolution as de®ned below.

2.2. Phenomenological modeling of creep damage

For structural purposes, failure in a creeping part can be considered to result from di�erent mechanisms
and phenomena. Experiments have identi®ed two limiting modes of fracture, which depend on the stress
level and the temperature of the test:

A ductile (or viscous) fracture is preceded by a reduction of the cross-sectional area due to large creep
strains essentially caused by a slip deformation within the grains. The growth and coalescence of cavities
in these materials is quite unhomogeneous. These subsequently grow further by the creep deformation,
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to interact with each other and eventually result in overall fracture (Chen and Argon, 1981; Don and
Majumbar, 1986). The ductile rupture mechanism occurs at high stress levels and low temperature regimes.

A brittle or intergranular fracture is caused by the deterioration of material due to the formation of voids
at grain boundaries. This fracture mechanism results in the growth of voids and the corresponding re-
duction of e�ective cross-sectional area below a critical value. The intergranular cavitation process in these
alloys is more homogeneous and leads to overall fracture without the intermediate formation of an ap-
preciable density of microcracks. The brittle fracture mechanism occurs at low stress levels and high
temperatures. The overall geometric e�ect is not observed as creep strains are small. This scenario is des-
cribed by Tvergaard (1985) and Riedel (1987).

However, the results support the suggestion of the existence of a transition zone (in stress), where none
of the above failure mechanism predominates, and where the combined ductile±brittle mechanism should
be introduced instead. In this zone, the failure results from both the large creep strains and the material
deterioration due to the nucleation of voids.

In order to describe the above features within a phenomenological approach, di�erent models of damage
have been introduced.

2.2.1. Viscoplastic damage model for brittle and combined ductile±brittle failure mechanisms
If we consider brittle fracture at low stress without geometrical e�ect, we can assume a time dependent

damage evolution. In this case, for a constant applied load, creep damage increases with time and the
geometrical e�ect is not necessary to describe the tertiary creep period. However, we can introduce non-
linear geometrical e�ects in order to display a transition zone, where the combined ductile±brittle failure
mechanism results from both material deterioration on grain boundaries and reduction of the cross-
sectional area due to large creep strains within the grain. Indeed, beyond strains of a few percent, the true
stress signi®cantly increases rather than remaining constant. This increase may induce a creep strain en-
largement. With this approach, we may obtain a viscoplastic damage model in nonlinear geometry, where
inelastic and damage processes are time dependent.

The relation (17) speci®es the evolution of the damage variable X by means of the damage dissipation
potential u�X . It has been shown experimentally that there exists a ®nite region in space stress (strain) within
which materials exhibit elastic±viscoplastic behavior without any development of damage (Holcomb and
Costin, 1986). Therefore, just like the viscoplastic potential, we assume the existence of a time dependent
yield function of damage and a damage potential in the space of the thermodynamics conjugate forces.
Thus, one of the simplest convex function for the damage dissipation potential may be given as for vi-
scoplastic ¯ow:

u�X �
1

nx � 1
fX �Y �h inx�1

� � 1

nx � 1
h ÿ Y ÿ Z0inx�1

� �23�

with fX �Y � � ÿY ÿ Z0 � 1
2
tr�rCeÿ1r� ÿ Z�X � ÿ Z0.

The expression of the damage evolution law is given by Eqs. (11) and (17):

_X � ÿ ou�X
oY
� 1

2
tr�rCeÿ1r�

�
ÿ Z�X � ÿ Z0

�nx

�
�24�

Z�X � is given by Eq. (10). Z�X � may be chosen as follows:

Z�X � � q
owX

oX
� q�1ÿ exp�ÿcX ��; �25�

where the material parameters nx, q and c control the damage evolution. Z0 P 0 denotes the initial damage
limit.
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2.2.2. Viscoplastic viscodamage model for ductile failure mechanism
If we consider that the tertiary creep stage arises from ductile phenomena at high stress, a viscoplastic

model in nonlinear geometry can describe this tertiary creep period. However, cavities subsequently grow
further by the creep deformation. Therefore, we introduce damage e�ects in the model, in order to display
this rapid evolution of damage at the end of the creep life in addition to the in¯uence of nonlinear geo-
metrical e�ects of changes in geometry on the strain rate. Unlike the above viscoplastic damage model,
where the creep damage increased with time, and where the geometrical e�ect was not necessary to have
damage evolution, the viscoplastic viscodamage model requires this geometrical e�ect. With this approach,
damage evolution is not directly linked with time. It is the coupling between viscoplasticity and geometrical
nonlinearities which allows the increase of stress under constant applied load and consequently the increase
in damage. We obtain a viscoplastic viscodamage model in the nonlinear geometry where viscoplastic
process is always time dependent. The basic idea in the formulation of this model is the following: The
damage directly a�ects the material elastic sti�ness. It is the coupling between the model and geometrical
nonlinearities which enables strain softening to occur.

The relation (17) speci®es the evolution of the damage variable X by means of the damage potential u�X .
In the viscoplastic damage model, an important distinction from the viscoplastic viscodamage model stems
from the fact that the current stress states can be outside the yield surface of damage, and that the yield
function may have a value larger than zero. Therefore, the consistency conditions are not applicable. When
the external loading remains constant, the stresses return to the yield surface as a function of time. Now, the
damage potential of dissipation is chosen as the indicator function of the damage convex de®ned by the
yield function:

fX �Y � � ÿY ÿ Z0 � 1

2
tr�rCeÿ1r� ÿ Z�X � ÿ Z06 0; �26�

where Z0 P 0 is the initial damage threshold.
Damage occurs only when the state of stress reaches the actual yield function. This corresponds to the

satisfaction of the yield criterion fX � 0. Damage continues to grow, if the yield is continuously satis®ed,
i.e. if _fX � 0. The expression of the damage evolution law is given by Eqs. (11) and (17):

_X � ÿkX
ofX

oY
� kX : �27�

The expression of the damage multiplier kX P 0 is deduced from the consistency conditions fX � 0 and
_fX � 0.

Z�X � is given by Eq. (10). Z�X � may be chosen as follows:

Z�X � � q
owX

oX
� ln�1� X �

A
; �28�

the material parameter A controls the damage evolution.

2.3. Viscoplastic (visco)damage models in nonlinear geometry

Nonlinear geometrical e�ects de®ned above, are described by writing in nonlinear geometry, the models
previously developed in small perturbations. We may consider an initial con®guration X0. Loads Fd0

are
applied to a part o2X0 on its boundary, and displacements ud0

on the part o1X0. Body forces density fd0
is

also applied. M0 is a point on X0 which we ®nd at M at the instant t Fig. 1. M is de®ned by
M � M0 � u�M0; t�; where u�M0; t� is the displacement field:

We may de®ne the various kinematic and static variables used:
F, the gradient tensor
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F � I � du�M0; t�
dM0

;

L, the velocity gradient tensor

L � _F F ÿ1;

D, the strain rate tensor

D � 1
2
�L� LT�;

W, the rotation rate tensor

W � 1
2
�Lÿ LT�;

s, the Kirchho� stress tensor

s � Jr; J � det F :

P, the ®rst Piola±Kirchho� stress tensor

P � JrF ÿT:

Generally, the variables used to describe the constitutive laws in nonlinear geometry are not objective.
To be objective, we consider the following kinematic model of Ladev�eze (1981). It introduces for all points
of the domain a local rotation R, de®ning the corotational con®guration X. This rotation locally transforms
the con®guration of X into a rotated con®guration X Fig. 1. R is associated to the rotation rate W, and
de®ned by the di�erential equation and the conditions:

_RTR � W � 1
2
�Lÿ LT�;

Rjt�0 � I ; RRT � I :

(
�29�

With this rotation, we obtain the strain rate and the stress tensor in the corotational con®guration:

s � RsRT

D � RDRT

�
�30�

the symbol x means that the variable is expressed in the corotational con®guration.
Furthermore, _s the Kirchho� stress in the rotated con®guration takes the following form:

_s � RsJRT �31�
sJ denotes the Jaumann rate of the Kirchho� stress and _s � sJ; Eq. (31) de®ned as an objective stress rate.

Fig. 1. Corotational model and boundary conditions.
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We obtain the viscoplastic (visco) damage models in nonlinear geometry by writing the corotational
con®guration of the geometrical model between _s and D, the models developed above in small perturba-
tions. Then, material behavior laws are objective constitutive laws (Roug�ee, 1991). The extension of the
models in nonlinear geometry is outlined in the text below, which shows the constitutive equations as
follows (see also Table 1):

qw�ee;X ; p� � qwe�ee;X � � qwvp�p� � qwX �X � (the free energy),

qwe�ee;X � �
1

2

tr�ee Ce ee�
1� X

with e �
Z T

0

Ddt

with D � De � Dvp and ee �
Z T

0

De dt; evp �
Z T

0

Dvp dt;

where De is the rotated elastic strain rate and Dvp is the rotated viscoplastic strain rate.
The constitutive laws:

s � q
owe

oee

� Ce

1� X
ee; R � q

owvp

op
� Q�1ÿ exp�ÿbp��;

Y � q
owe

oX
� q

owX

oX
� ÿ 1

2
tr�sCÿ1

e s� � Z�X �; Z�X � � q
owX

oX
:

U � tr�sDvp� ÿ Y _X ÿ R _p P 0 �the intrinsic dissipation�;

u��s;R; Y � � u�vp�s;R� � u�X �Y � �the dissipation potential�:

The complementary evolution laws:

Dvp �
ou�vp�s;R�

os
; _p � ÿ ou�vp�s;R�

op
; _X � ÿ ou�X �Y �

oY
:

Table 1

Constitutive equations in nonlinear geometry

Viscoplastic damage model Viscoplastic viscodamage model

u�vp � K
n�1

seqÿR�p�ÿR0

K

D En�1

�
u�vp � K

n�1

seqÿR�p�ÿR0

K

D En�1

�

with seq �
��������������������
3
2
tr�sD sD�

q
with seq �

��������������������
3
2
tr�sD sD�

q
and sD the deviatoric part of s, and sD the deviatoric part of s,

u�X � 1
nx�1

1
2

tr�sCÿ1
e s� ÿ Z�X � ÿ Z0


 �nx�1

� ; fX �Y � � 1
2
tr�sCÿ1

e s� ÿ Z�X � ÿ Z06 0;

Dvp � 3
2

sD
seq

_p; Dvp � 3
2

sD
seq

_p;

_p � seqÿR�p�ÿR0

K

D En

�
; _p � seqÿR�p�ÿR0

K

D En

�
,

_X � 1
2

tr�sCÿ1
e s� ÿ Z�X � ÿ Z0


 �nx

� , _X � ÿkX
ofX �Y �

oX � kX ,

Z�X � � q�1ÿ exp�ÿcX ��. Z�X � � ln�1�X �
A .
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3. Numerical treatment by the large time increment method

Numerical simulation of creep behavior with classic software leads to small and therefore numerous
loading time increments, which in turn leads to a large number of global resolutions. Unlike the classical
incremental methods of the Newton±Raphson type, which break up the loading interval into small in-
crements, the LATIN method (Boisse et al., 1990) consists of designing an iterative scheme which, at each
iteration, gives an approximation to the solution for large loading increment (large time increment for creep
behavior). The LATIN method enables us to describe large creep life in a few increments, in order to reduce
the calculation cost. With this method, we can swiftly reach the tertiary creep period, which involves most
nonlinearities in order to obtain a creep life assessment.

3.1. Iterative scheme

The iterative scheme of this method provides at each iteration a new estimation of the solution on
X0 � �0; T �, for large time increment, and not for small increment by small increment and it does so until
convergence occurs. As for steady state problems, each iteration progresses from an admissible estimation
Sn � � _Fn; _Pn� 2 Ad to another better estimation Sn�1 � � _Fn�1; _Pn�1� 2 Ad verifying the kinematic and the static
admissibilities on X0 � �0; T �. Each iteration is split into two steps: Firstly, a nonlinear and local step (in
space), which leads to a calculated intermediate estimation Ŝn � � _̂F n; _̂P n� 2 C, verifying the behavior laws.
Secondly, a global (in space) and linear step, which gives Sn�1 � � _Fn�1; _Pn�1� 2 Ad . The global iterative
process ceases when the error kŜn ÿ Sn�1k is su�ciently low.

Before beginning this presentation, we will present the mechanical problem in nonlinear geometry in a
form compatible with the LATIN method initially developed in small perturbations (Bussy et al., 1990).

Problem: ®nd Se � Ad \ C

Sn 2 Ad ()

9un�M0; t�=u�M0; 0� � 0 and _u�M0; 0� � 0;

_un�M0; t� jo1X0
� _ud and _Fn � o _un

oM0
;

8 t 2 �0; T �; 8u�=u� jo1X0
� 0 and u��M0; 0� � 0;R

X0
tr� _P T

n F ��dX0 �
R

o2X0

_Fd0
u� dS0 �

R
X0

_fd0
u� dX0:

8>>>>>>>><>>>>>>>>:
�32�

Ŝn 2 C() _̂F nt �A�P̂ng ; g6 t�; �33�
where A is an operator representing the behavior law. A presents the material and the geometrical non-
linearities. The algorithm is in the form of a series of iterations on large time increment in which each
iteration is in two steps between the two sets Ad and C.

In practice, the global step is transformed in order to write Sn�1 2 Ad in the following form:

Sn�1 � Sn � DSn�1 �34�
or � _Fn�1; _Pn�1� � � _Fn; _Pn� � �D _Fn�1;D _Pn�1�

or Sn�1 � S0 �
Xn�1

i�0

DSi; �35�

where S0 is an elastic initialization and n the number of iterations. DSn�1 must be kinematically and stat-
ically admissible at 0.
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Local step: knowing Sn � � _Fn; _Pn� 2 Ad , construct Ŝn�1 � � _̂F n�1; _̂P n�1� 2 C verifying on �0; T �:
_̂F n�1t �A�P̂n�1g ; g6 t� in X0 �36�

with _̂F n�1 � _Fn in X0: �37�
Global step: from Ŝn�1 � � _̂F n�1; _̂P n�1� 2 C, ®nd DSn�1 � �D _Fn�1;D _Pn�1� 2 Ad verifying on �0; T �:

9D _un�1=D _Fn�1 � oD _un�1

oM0
and D _un�1 jo1X0

� 0;

8u�=u� jo1X0
� 0 and u��M0; 0� � 0;R

X0

R T
0

tr F �T Ce D _Fn�1

h i
dt dX0 �

R
X0

R T
0

tr F �T � _Pn ÿ _̂P n�1�
h i

dt dX0:

8>>>>><>>>>>:
�38�

The act of writing the above global problem (38) in this variational form and in this kinematic approach
for the ®nite element resolution, arises from the choice of the search direction (37) between the global and
the local steps and the search direction:

_̂P n�1 ÿ _Pn�1 � Ce� _̂F n�1 ÿ _Fn�1� �39�
between the local and the global steps.

Search directions de®ned by Eqs. (37) and (39) characterize the LATIN method version. With these
choices, the iterative algorithm is like a modi®ed Newton method.

3.2. Representation of the unknowns

There are no special di�culties about the local step. The question is to solve a nonlinear problem for the
interval �0; T � at any integration point M0. The greatest di�culty is to solve the global problem (38), which is
parameterized by time on the interval �0; T �. In order not to solve the global problem for each time, this
problem is divided into two problems. A ®rst space problem which depends only on the space variable M0,
and a second time problem which depends only on time. To obtain at each iteration a new estimation
solution over the large time increment, the idea is to represent at each iteration the unknowns in the fol-
lowing form:

D _un�1 � _un�1�t;M0� ÿ _un�t;M0� �
Xp

i�1

gi�t� wi�M0�;

D _Fn�1 � _Fn�1�t;M0� ÿ _Fn�t;M0� �
Xp

i�1

gi�t� ai�M0�; �40�

D _Pn�1 � _Pn�1�t;M0� ÿ _Pn�t;M0� �
Xp

i�1

hi�t� bi�M0�;

where gi�t� and hi�t� de®ned on �0; T � are scalar time function constant for each integration time step of the
behavior law. p is the number of time functions at each iteration. The ®elds wi�M0�, ai�M0� and bi�M0�
depend only on the space variable M0. With ai�M0� � dwi

dM0
and ai�M0� KA at 0 and bi�M0� SA at 0.

For more details concerning the numerical treatment by the LATIN method, see Bussy et al. (1990) and
Bellenger (1998b). To sum up, a scheme of the algorithm is presented in Fig. 2, in comparison with classical
incremental method Fig. 3, where K is the sti�ness matrix, dUi is the nodal vector of space variables dui and
Fi the second member. The space variable ai�M0� is equal to BdUi, where B is the derivative matrix of the
basis functions.
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3.3. Algorithmic aspects

From the computational point of view, the above constitutive equations (see the constitutive equations
in Section 2.3 and Table 1) must be integrated during the local step. In displacement-based ®nite element
formulations, stress updates take place at the Gauss points for a prescribed nodal displacement. We start
from time t with the known converged state: �et; evpt

; st; pt; Xt� to calculate the corresponding value at time
t � Dt: �et�Dt; evpt�Dt

; st�Dt; pt�Dt; Xt�Dt� with a prescribed incremental nodal displacement.

F̂t�Dt � F̂t � DF̂ : �41�
Therefore, from the de®nition of the strain rate tensor D,

De � 1

2
DF̂ F̂ ÿ1

t�Dt

h
� �DF̂ F̂ ÿ1

t�Dt�T
i
: �42�

A numerical resolution of the di�erential equation (29) allows to obtain Rt�Dt and

De � Rt�Dt DeRT
t�Dt: �43�

The key feature of stress updates is characterized by estimating the incremental viscoplastic strain Devp

and the incremental damage DX . We can perform an elastic predictor, assuming that the viscoplastic and

Fig. 2. LATIN method algorithm.

Fig. 3. Classic incremental method algorithm.
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the damage variables remain frozen. The trial elastic stress str can be computed by the constitutive law in
Section 2.3.

str � st � Ce

1�Xt
De;

pt�Dt � pt;
Xt�Dt � Xt:

������ �44�

3.3.1. Viscoplastic damage model
If str lies outside the viscoplastic domain fvp and the damage domain fX , a viscoplastic-damage corrector

step is then carried out by using for example a simple Euler forward integration scheme (explicit method).
Therefore (see Table 1),

pt�Dt � pt � Dp � pt � Dt _pt with _pt � �seqt
�ÿR�pt�ÿR0

K

D En

�
Xt�Dt � Xt � DX � Xt � Dt _Xt with _Xt � 1

2
tr �st Cÿ1

e st� ÿ Z�Xt� ÿ Z0


 �nx

� :

������ �45�

Damage and inelastic phenomena evolutions lead to the stress tensor at t � Dt as:

st�Dt �
Ce

1� Xt�Dt
�et�Dt ÿ evpt�Dt

� � Ce

1� Xt�Dt
�et�Dt ÿ evpt

ÿ Devp�: �46�

Substitution of evpt
� ÿCÿ1

e st�1� Xt� � et (see Table 1) into Eq. (46) yields

st�Dt �
Ce

1� Xt�Dt
�Deÿ Devp� � st

1� Xt

1� Xt�Dt
�47�

in which (see Table 2)

Devp �
3

2

sDt

seqt

Dp: �48�

Now P̂t�Dt becomes

P̂t�Dt � RT
t�Dt st�Dt Rt�Dt F̂ ÿT

t�Dt: �49�

Table 2

Summary of material parameters for IN 100 at 1000°C

Parameters IN 100 (1000°C)

E (MPa) 147 000

m 0.3

n 7.5

K 450

R0 0

Q 95

b 6000

nx 4.5

q 0.5

c 0.038

Z0 0
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3.3.2. Viscoplastic viscodamage model
The trial elastic stress str is given by Eq. (44). If stress lies outside the viscoplastic domain fvp, a visco-

plastic corrector step is then carried out as in the above model. If the stress lies outside the damage domain
fX , a viscodamage corrector is carried out using the algorithm stated by Ortiz and Simo (1986).

In this consistency approach (for damage), at each iteration, the stress is relaxed in a step-by-step
process. For each iteration �j�, the damage multiplier kX � _X [see Table 1] is determined by the discretized
consistency condition of the damage yield surface. For each iteration, fX is linearized around the current
values of the state variables as

f �j�1�
Xt�Dt

' f �j�Xt�Dt
� of �j�X

os

 !
t�Dt

Ds�j�1�
X � of �j�X

oX

 !
t�Dt

DX �j�1�: �50�

The damage multiplier is determined by requiring f �j�1�
Xt�Dt

' 0. Di�erentiating the constitutive law of s (see
the constitutive equations in Section 2.3), we may obtain damage stress variation Ds�j�1�

X in the following
form:

Ds�j�1�
X � ÿ Ce

�1� X �j�t�Dt�2
ee DX �j�1�: �51�

Substitution of the constitutive law of s into Eq. (51) gives

Ds�j�1�
X � ÿ s�j�t�Dt

1� X �j�t�Dt

DX �j�1�: �52�

Substitution of Eq. (52) into Eq. (50) gives

DX �j�1� � f �j�Xt�Dt

tr�s�j�
t�Dt

Cÿ1
e s�j�

t�Dt
�

1�X �j�
t�Dt

� Z 0�X �j�t�Dt�
�53�

and

X �j�1�
t�Dt � Xt �

Xj�1

i�1

DX �i�; �54�

s�j�1�
t�Dt is given by Eq. (47). The iterative process ceases when f �j�1�

Xt�Dt
' 0.

4. Numerical examples

The creep constitutive models in nonlinear geometry, presented above, have been implemented in our
®nite element code OPTIFIA using the LATIN method. The elements used are isoparametric six-node
triangles with three Gauss points.

Firstly, the viscoplastic damage model has been used for uniaxial tensile creep behavior, in order to
display the modeling and the numerical resolution capabilities. After that, ®nite element computational
results have been obtained for the creep analysis of notched plates and double edge cracked plates, where
stress gradients exist. It has been shown how this model has the capability to describe the lifetimes and the
patterns of damage evolution. Secondly, the viscoplastic viscodamage model has been used for an L-shaped
structure in order to show the capability and the characteristics of this approach to describe the devel-
opment of damage in creeping components. Finally, we have used the models on the same structure, in
order to display di�erent modes of damage development and their dependences on the level of stress.
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4.1. Example 1: uniaxial creep behavior

To test the viscoplastic damage model, we must compare its predictions against uniaxial creep results
concerning IN 100 at 1000°C (Lemaitre and Chaboche, 1985). In this example, the stress state is uniform,
the level of damage is also uniform. The values of the parameters for this material are given in Table 2. Fig.
4 shows the uniaxial creep curves of IN 100 under di�erent levels of applied load (constant applied load).
The prediction of the uniaxial tensile creep behavior by the present model and experimental results concord
well.

In addition to the in¯uence of damage on the strain rate, the nonlinear e�ects of changes in geometry
may also signi®cantly contribute to tertiary creep. In the constant load tensile test, this amounts to the
uniform thinning of the area cross-section at increasing longitudinal strain. For metals with negligible
damage rates, it is this mechanism, which is primarily responsible for tertiary creep and subsequent rupture.
The viscoplastic damage model used in this example can describe this nonlinear geometrical phenomenon.
In Fig. 5, the behavior of the model is compared with the model in small perturbations (constant stress test)
as well as the behavior of the model without damage for IN 100 at 137 MPa. In this case, it can be seen that
the interaction between the geometrical e�ect and damage is not important. For this material, the geo-
metrical e�ect is far less signi®cant than damage. Neglecting the geometrical e�ect results in an error of
about 4% in fracture time while neglecting damage results in an error of about 300% in fracture time. In
this case, we have described a brittle rupture phenomenon. However, for a material with a more important
primary creep period (Fig. 6(A), Curves 1 and 2), it can be seen that the interaction between the geometrical
e�ect and damage produces a more pronounced tertiary creep period than that obtained by neglecting
either one of the e�ects. Neglecting the geometrical e�ect results in an error of about 16% in fracture time
(Fig. 6(A), Curve 2). Therefore, tertiary creep arises more from interaction between damage and geo-
metrical nonlinearities, these results emphasizes a combined ductile±brittle failure mechanism. This more
important coupling can be seen in Fig. 6(B). For Curve 2, the stress continuously grows with time during
loading when for Curve a, the increase of stress takes place su�ciently early in the lifetime of the specimen
to enable the rupture life to be predicted in small perturbations.

Fig. 4. Comparison of the experimentally obtained strain-time with predicted IN 100 at 1000°C.
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4.1.1. Numerical analysis
To measure the performance of the LATIN method considered in this study, for results concerning the

above example, we may compute a reference solution with a large number of increments until results do not
change. To assess the performance of the LATIN method, two errors have been de®ned for IN 100 at 137
MPa. er2 is an error in displacement between the reference solution and the calculations for a loading of
20 000 seconds, er1 is an error in time between the reference solution and the calculations for a displacement
of 0:2%. All runs were performed on an HP 9000 C160 workstation.

First of all (Table 3), a decrease in the number of increments (with 40 time steps per load time increment)
allows us to divide the iterations by 5.6 keeping er1 and er2 small. In the case of four load time increments,

Fig. 5. E�ect of damage and geometrical nonlinearities for IN 100 at 137 MPa.

Fig. 6. (A) E�ect of geometrical nonlinearities; (B) Evolution of r. Curves b, 10 and 20 are in small perturbations. Curves a, b and 2 are

in nonlinear geometry. For curves a and b see Fig. 5.
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the CPU time varied from 508 to 30 s (Table 3). It is possible to improve this by describing the three creep
periods with two increments. If we emphasize the speed, only 17 s are required (Table 4). If we emphasize
the accuracy, 59 s are required for er1 � 0:19% and er2 � 0:03 % (Table 4). However, the LATIN method
enables this problem to be simulated with only one increment and two iterations with a good value for er1.
Therefore, 2� p global resolutions have been necessary �p � 10�, p is de®ned in Eq. (40). With classic
incremental method, at least 200 global resolutions would be necessary to obtain the same time discreti-
zation (200 time steps).

4.2. Example 2: creep damage analysis of edge cracked plates

A better understanding of the development of damage in creeping components is essential in design as
well as in the estimation of creep life. The information that is needed for life predictions is a reliable model
for the accumulation of creep damage. It is then important to describe the possible localizations of this
damage in regions of strain concentrations, such as notches and cracks. Therefore, ®nite element com-
putational results have been obtained for edge cracked plates. The geometry, mesh and boundary condi-
tions are shown in Fig. 7. We will take one half of the edge cracked plates. The values of the parameters
used in the viscoplastic damage model are given in Table 2.

The creep strain distribution in double edge cracked plate is plotted in Fig. 8(d). For this geometry, the
creep strains concentrate along inclined planes with respect to the initial crack plane. The resulting damage
contours are plotted in Fig. 8(b). It is clear that a damage zone is propagating along an inclined plane with
respect to the initial crack plane. It should be noted that as the creep strains increase, the initial sharp crack
tip becomes more and more blunted. Because of this e�ect, the specimen develops a notch-like behavior and
the damaged zone begins to concentrate in later stage in the symmetry plane of the crack. The macrocracks
then develop two branches. This tendency can be seen in Fig. 8(b). A plate containing a central slit has been
selected too. The distribution of accumulated creep strains is shown in Fig. 8(c). Fig. 8(a) shows the
contours of damage distribution. A damage zone is propagating along two inclined zones with respect to
the initial crack plane. Fig. 9 shows how a central slit reduces the creep rupture lifetime with regard to a

Table 4

Numerical analysis of IN 100 results

Number of LATIN increments 2 2 1

Number of time steps 140 400 200

Number of LATIN iterations 4 5 2

CPU time (s) 17 59 27

er1 2% 0.19% 0.35%

er2 1.8 % 0.03 %

Table 3

Numerical analysis of IN 100 results

Reference

Number of LATIN increments 33 33 19 9 4

Number of time steps 2640 1320 760 360 160

Number of LATIN iterations 107 94 65 37 19

CPU time (s) 508 240 135 72 30

er1 0.036% 0.09% 0.22% 0.71%

er2 0.008% 0.036% 0.062% 0.3%

594 E. Bellenger, P. Bussy / International Journal of Solids and Structures 38 (2001) 577±604



double edge cracked plate. These results have shown that the model can predict the patterns of damage
evolution within the edge cracked plates.

Finite element computational results have been obtained for notched plates in Bellenger (1998b). Two
notched radius have been selected: For the specimen with a sharper tip radius, the damage is highly
concentrated at the notch tip region. In the experiments of Ozmat (1991), it was observed that cracks do not
continue to grow along the symmetry plane of the blunt notch inde®nitely, but eventually show a tendency
to bifurcate. A trend in this direction is seen in a later stage of our damage accumulation model. In order to

Fig. 7. Geometry, mesh and boundary conditions of edge cracked plate �F � 100 MPa).

Fig. 8. Creep damage contours: (a) central slit, (b) double edge cracked plate; creep strain contours, (c) central slit, and (d) double edge

cracked plate.
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represent another type of notch character, a second geometry with a less sharp tip radius has been selected.
The maximum damage starts from the root of the notch and progresses gradually to the centre of the
specimen. This is con®rmed by the observed appearance of the failed specimen in experimental tests.
Furthermore, the specimen with a sharper tip radius has a rupture lifetime in excess of the lifetime of the
specimen with a less sharp tip radius for the same average stress level acting on a notch throat. These ®nite
element predictions of rupture times agree well with the experimental rupture times.

4.2.1. Numerical analysis
Numerical results concerning the notched plate with a less sharp tip radius have been obtained with 10

increments for 92% of the loading time (30 000 s). These increments require 14% of the global CPU time.
The last 8% of the loading (until 32 500 s) require eight increments and 86% of the global CPU time.
Clearly, we can see that the LATIN method can handle large time increments during primary and sec-
ondary creep periods to reach swiftly the tertiary creep period. However, if we want an assessment of the
creep life, the calculations can be stopped when the tertiary creep period is shown. In this case, we can stop
the calculations at 31 000 s and the CPU time is divided by six with a small error on the creep life as-
sessment. If we want to know the post-critical behavior and the damage development until failure, the
calculation cost is higher but possible because of the stability of the models which allows us to continue the
calculations, in order to describe the tertiary creep period (Bellenger, 1998b). The viscoplastic damage
model enables the very di�erent behavior of sharp cracks and notches to be qualitatively described to show
the post-critical contours of damage distribution.

4.3. Example 3: L-shaped structure subjected to creep

The above examples used the viscoplastic damage model in nonlinear geometry. For this model, the
creep damage increases with time and the geometrical e�ect is not necessary to describe the tertiary creep
period (Fig. 5). However, in order to display a transition zone where the combined ductile±brittle failure
mechanism arises, the nonlinear geometrical e�ect has been introduced.

Fig. 9. Creep curves: velocity of the point A (see Fig. 7) for edge cracked plates.
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Now, if we consider that the tertiary creep period arises from ductile phenomena at high stress with a
rapid evolution of damage at the end of the creep life, the viscoplastic viscodamage model in nonlinear
geometry must be used. Finite element computational results have been obtained for an L-shaped structure
using this model. The values of the parameters are given in Table 5. The geometry, the mesh and boundary
conditions are shown in Fig. 10.

Unlike the viscoplastic damage model where the geometrical e�ect was not necessary to have damage
evolution (Fig. 5), the viscoplastic viscodamage model requires this geometrical e�ect. In Fig. 11 the be-
havior of the model is compared with the model in small perturbations (Curve 1) as well as the behavior of
the model in nonlinear geometry without damage (Z0 � 1) (Curve 2). Clearly, we can see that the tertiary
creep description is not possible in small perturbations. This phenomenon arises from the choice of the
damage convex de®ned by the yield function fX �Y �6 0. Damage occurs only when the state of stress reaches
the actual yield function and damage continues to grow if fX �Y � > 0 at each time step. Under a constant
applied load, this requires the increase in the stress by the nonlinear geometrical e�ect. Fig. 12 shows the
contours of damage distribution at di�erent creep times. The damage grows swiftly by creep deformation at
the end of the creep life, to produce a more pronounced tertiary creep phase.

This example using the viscoplastic viscodamage model in nonlinear geometry has shown a ductile
fracture preceded by a reduction in the cross-sectional area due to large creep strains, damage subsequently
grows further by creep deformation.

4.4. Example 4: simpli®ed study of turbine casing

Creep strains and damage development in simpli®ed turbine casting (Fig. 13) under steady loads
(pressure) (Dawson et al., 1980) have been predicted using the above models in order to display on the same
structure di�erent crack growth behaviors and their dependences on the stress levels. We will take one
quarter of the structure: the geometry, the loading and boundary conditions are shown in Fig. 13. The
values of the parameters used in the viscoplastic (visco) damage models are given in Tables 6 and 7. For
viscoplastic behavior the parameters correspond to stainless steel 17±12 SPH at 600°C.

To describe a ductile fracture phenomenon with the viscoplastic viscodamage model in nonlinear geo-
metry, a loading of 12 MPa is applied. In this case, damage initially appears in zone B (Fig. 14(b)) followed
by necking in zone C and damage appearance in this zone by creep deformation (Fig. 14(b)). Nevertheless,
the ductile rupture mechanism occurs in zone C, because the damage level is more important than in zone
B. This ductile phenomenon results from large creep strains. The geometrical e�ect can be seen in Fig. 15(b),
which shows the creep strain contours. The creep curve which gives the displacement of point A

Table 5

Summary of material parameters for the L-shaped structure

Parameters

E (MPa) 50 000

m 0.3

n 5

K 1200

R0 150

Q 10

b 500

Z0 0.4

A 25
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Fig. 10. Geometry, mesh, boundary conditions and loading of the L-shaped structure (F � 220 MPa).

Fig. 11. Creep curves ± displacement with time of the loaded extremity for the L-shaped structure: 1. viscoplastic viscodamage model in

small perturbations, 2. viscoplastic model in nonlinear geometry and 3. viscoplastic viscodamage model in nonlinear geometry.
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Fig. 12. Creep damage contours at di�erent creep times (tr � rupture time).
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with time (Fig. 16(a)) shows a pronounced tertiary creep phase which allows us to obtain a creep life as-
sessment.

In order to describe a brittle, but much more creep resistant fracture morphology, a loading of 6 MPa is
applied using the viscoplastic damage model in non linear geometry. Fig. 14(a) shows the contours of
damage distribution at di�erent creep times. It is clear that the damage is concentrated at the inner surface
of the shoulder. In this zone, damage reaches values superior to 99.9%. At rupture, the Von Mises stress
reaches zero for the most damaged point (point B) (Fig. 16(b)) when the stress for point C remains constant
throughout loading. This calculation describes a brittle fracture caused by the deterioration of material
with time. This mechanism occurs at low stress levels. The overall geometric e�ect is not observed since

Fig. 13. Simpli®ed turbine casing, geometry and boundary conditions.

Table 7

Summary of damage material parameters for the simpli®ed turbine casing

Viscoplastic damage model Viscoplastic viscodamage model

nx q c Z0 Z0 A

3 0.5 0.038 0 0.04 100

Table 6

Summary of material parameters for the simpli®ed turbine casing

17±12 SPH 600°C

n K Q b R0 E (MPa) m

12 150 80 10 6 145 000 0.3
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creep strains are small (Fig. 15(a)) and the lifetime is much higher: 316 500 s (3600 s for the loading of 12
MPa).

Fig. 14. Creep damage contours at di�erent creep times (tr � rupture time).
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5. Conclusions

In this paper, a macroscopic modeling of creep behavior has been proposed. Backstress models within
uni®ed formulation have been used for numerical simulations of primary and secondary creep periods,
associated with a scalar damage variable and nonlinear geometrical e�ects for tertiary creep description.
Two damage models have been introduced in order to describe di�erent modes of creep damage evolution.
Numerical examples have shown that the proposed approach can describe these di�erent failure mecha-

Fig. 15. Creep strain contours at t=tr � 1:

Fig. 16. (a) Displacement with time of the point A (see Fig. 13) with a loading of 12 MPa; (b) Local evolutions with time of the Von

Mises equivalent stress (loading of 6 MPa).
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nisms with an accurate prediction of the patterns of damage evolution for a large range of components.
Furthermore, the numerical properties of the models allow us to obtain a di�erent crack growth devel-
opment, in order to know the post-critical behavior and the damage development until failure. We have
proposed to use the LATIN method in a version adapted to solve problems with geometrical nonlinearities.
This method describes primary and secondary creep periods in a few large time increments to reach swiftly
the tertiary creep period. If creep life assessment or creep strains evolution are the aims of a study, the
LATIN method allows us to obtain a rapid solution to the problem in a few time increments (one increment
for uniaxial creep problem). In this case, we can stop the calculations when the tertiary creep period is
displayed, with a small error on the creep life assessment. If we want to know the post-critical behavior, the
calculations are possible because of the stability of the models, which allow us to continue these calculations
in order to describe the tertiary creep period.
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